

SCIENCES DE L'INGENIEUR

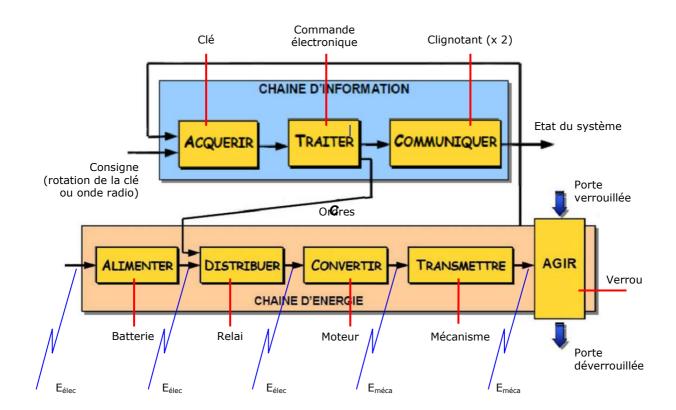
Actionneur de serrure

ETUDE DE CAS

Durée de l'activité : 2 heures

1 – Présentation du système

Le système étudié ici permet de verrouiller / déverrouiller une serrure de portière automobile Peugeot 306.


Dans les anciennes versions, l'utilisateur tournait la clé dans la serrure et la rotation engendrée réalisait mécaniquement le verrouillage/déverrouillage.

Dans les versions actuelles, la rotation de la clé dans la serrure est une simple consigne, c'est-à-dire une information (un ordre) envoyée à une commande électronique qui assure l'alimentation électrique du moteur (0). La rotation du moteur

(0) est alors transformée puis adaptée mécaniquement pour que le dispositif de verrouillage / déverrouillage soit actionné.

<u>Remarque</u>: il est fréquent de voir des dispositifs où la consigne est générée à l'aide d'une impulsion sur la clé; l'information est alors transmise au directeur de commande par onde radio: cela permet donc le verrouillage / déverrouillage à distance.

Ci-dessous la nomenclature associée au plan d'ensemble du mécanisme de verrouillage / déverrouillage :

6	Corps supérieur	
5	Corps inférieur	
4	Coulisseau	Course = 80 mm
3	Vis de transmission	$D = 6mm - p = 0.8mm - Z_3 = 2 filets$
2	Roue cylindrique	$Z_2 = 48 \text{ dents} - m = 2$
1	Pignon moteur	$Z_1 = 17 \text{ dents} - m = 2$
0	Moteur électrique à courant continu	$N_{10} = n \text{ Tr/min (inconnue)}$
Rep	Désignation	Caractéristiques

Problématique:

On souhaite déterminer deux choses :

- \Rightarrow La vitesse de rotation du moteur N_{moteur} permettant d'assurer une durée de verrouillage ou déverrouillage égale à $\Delta t=0.5~s$.
- \Rightarrow L'énergie consommée $E_{\it conso}$ par un verrouillage (ou déverrouillage).

Pour se faire, l'étude se décompose en 3 parties :

Partie A: analyse du plan d'ensemble pour comprendre comment fonctionne le mécanisme.

Partie B: une analyse <u>cinématique</u> de la chaîne de transmission pour déterminer la vitesse de rotation du moteur avec :

- ⇒ Une analyse détaillée de la transmission par engrenage de type « roues cylindriques »,
- ⇒ Une analyse détaillée du système « Vis / écrou ».

Partie C: une analyse <u>énergétique</u> de la chaîne de transmission pour trouver la quantité d'énergie consommée lors d'une manœuvre.

PARTIE A

Analyse structurelle (à partir du plan d'ensemble)

On donne les classes d'équivalence :

- " Une classe d'équivalence est un groupement de pièces qui sont complètement solidaires les unes avec les autres.
- F Le numéro de la classe d'équivalence est celui de la principale pièce qui la compose.

$${C0} = {0; 5; 6}$$

$$\{C1\} = \{1\}$$

$$\{C2\} = \{2; 3\}$$

$$\{C4\} = \{4\}$$

Q1 – Colorier sur les trois vues orthogonales du plan d'ensemble les classes {C1}, {C2} et {C4}

- Une couleur par classe d'équivalence.
- F {CO} sera laissée en noir (ne pas la colorier).
- Prenez des couleurs suffisamment différentes les unes des autres.

On donne dans le Dossier Technique (voir à la fin) le graphe des liaisons mécaniques du système ainsi que les schémas cinématiques 2Det 3D.

- **Q2** Reporter sur la vue en perspective du plan d'ensemble le repère $R(\vec{x}, \vec{y}, \vec{z})$.
- Q3 Définir les liaisons identifiées dans le graphe des liaisons et les schémas cinématiques.
 - Pour chaque liaison, ne pas oublier de donner le centre de la liaison et son axe s'il existe.
 - Pour les liaisons associées aux transmissions, donner simplement le nom du principe de transmission.

$L_{10} =$		
L ₂₁ =		
L ₂₀ =		
L ₄₀ =		
L42 =		

PARTIE B

Analyse cinématique

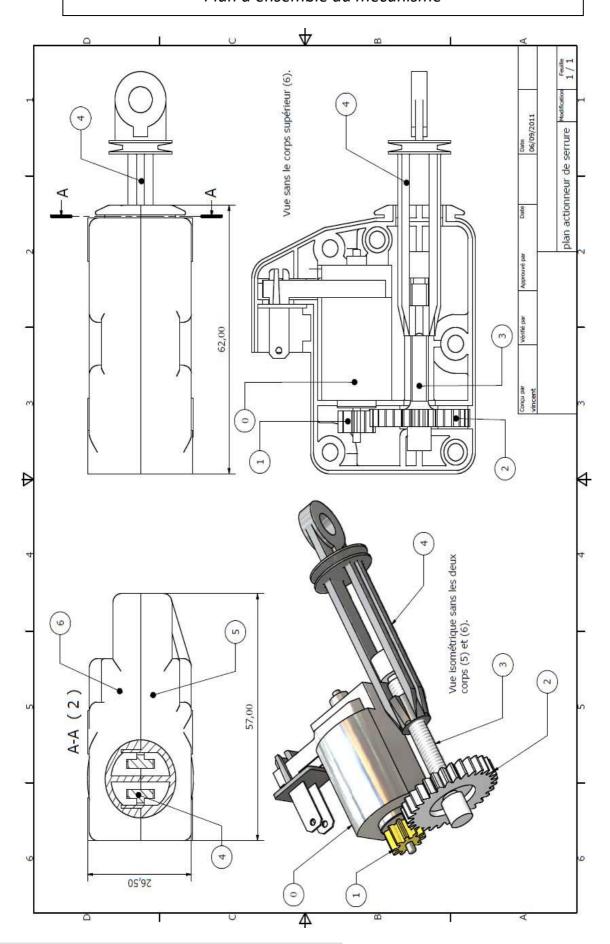
(recherche de la vitesse de rotation du moteur)

Q4 – Indiquer dans le schéma-bloc ci-dessous le nom des organes de transmission présents dans le système.

Q5 – rappeler la durée de manœuvre qui est préconisée : $\Delta t = $ s .
Q6 – Faire le nécessaire pour calculer en $tr\cdot min^{-1}$ la vitesse de rotation N_{moteur} du moteur.
Il s'agit de respecter la durée de manœuvre préconisée.
Soyez clair dans vos calculs: dire ce que vous faites avec un titre très court, commencez les calculs par des formula littérales, donnez des noms aux grandeurs, etc.
$N_{moteur} = ___tr \cdot min^-$

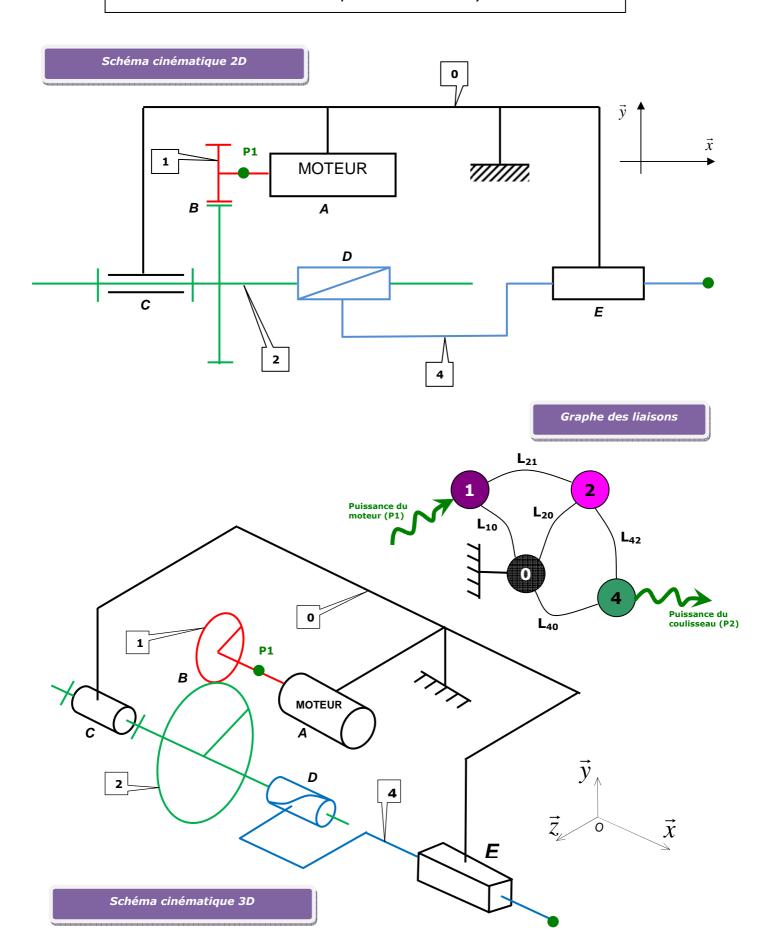
PARTIE C

Analyse énergétique


(recherche de l'énergie consommée lors d'une manœuvre)

		(recherche de l'energie consommée fors à une manœuvre)
Q7	7 – C	Talculer en $W\cdot h$ l'énergie consommée E_{conso} par une manœuvre (de verrouillage ou déverrouillage).
	F	Le coulisseau (4) développe une force $F = 6 N$ pour verrouiller (déverrouiller) le verrou ; cette force est dans l'axe a coulisseau.
	P	Le rendement de la transmission par engrenage à roues cylindriques est $\eta_{j-2}=0.95$.
	P	Le rendement de la transmission par vis/écrou est $\eta_{3-4}=0.85$.
	P	Le rendement du moteur est $\eta_{moteur}=0,62$.
		$E_{conso} = ___W \cdot \mathcal{N}$
Q	3 – ⊦	labiller du mieux possible le schéma-bloc de la Q4.
	P	Y porter les informations de nature cinématiques en bleu et énergétique en rouge.

Lycée Chevalier d'Eon, TONNERRE | GV06032017


DOSSIER TECHNIQUE 1/2

Plan d'ensemble du mécanisme

DOSSIER TECHNIQUE 2/2

Schémas cinématiques 2D et 3D du système

